3.952 \(\int \frac{x^{10}}{\left (1+x^4\right )^{3/2}} \, dx\)

Optimal. Leaf size=140 \[ -\frac{x^7}{2 \sqrt{x^4+1}}+\frac{7}{10} \sqrt{x^4+1} x^3-\frac{21 \sqrt{x^4+1} x}{10 \left (x^2+1\right )}-\frac{21 \left (x^2+1\right ) \sqrt{\frac{x^4+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac{1}{2}\right )}{20 \sqrt{x^4+1}}+\frac{21 \left (x^2+1\right ) \sqrt{\frac{x^4+1}{\left (x^2+1\right )^2}} E\left (2 \tan ^{-1}(x)|\frac{1}{2}\right )}{10 \sqrt{x^4+1}} \]

[Out]

-x^7/(2*Sqrt[1 + x^4]) + (7*x^3*Sqrt[1 + x^4])/10 - (21*x*Sqrt[1 + x^4])/(10*(1
+ x^2)) + (21*(1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x], 1/2])
/(10*Sqrt[1 + x^4]) - (21*(1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcT
an[x], 1/2])/(20*Sqrt[1 + x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.0904643, antiderivative size = 140, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.385 \[ -\frac{x^7}{2 \sqrt{x^4+1}}+\frac{7}{10} \sqrt{x^4+1} x^3-\frac{21 \sqrt{x^4+1} x}{10 \left (x^2+1\right )}-\frac{21 \left (x^2+1\right ) \sqrt{\frac{x^4+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac{1}{2}\right )}{20 \sqrt{x^4+1}}+\frac{21 \left (x^2+1\right ) \sqrt{\frac{x^4+1}{\left (x^2+1\right )^2}} E\left (2 \tan ^{-1}(x)|\frac{1}{2}\right )}{10 \sqrt{x^4+1}} \]

Antiderivative was successfully verified.

[In]  Int[x^10/(1 + x^4)^(3/2),x]

[Out]

-x^7/(2*Sqrt[1 + x^4]) + (7*x^3*Sqrt[1 + x^4])/10 - (21*x*Sqrt[1 + x^4])/(10*(1
+ x^2)) + (21*(1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x], 1/2])
/(10*Sqrt[1 + x^4]) - (21*(1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcT
an[x], 1/2])/(20*Sqrt[1 + x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 8.76336, size = 128, normalized size = 0.91 \[ - \frac{x^{7}}{2 \sqrt{x^{4} + 1}} + \frac{7 x^{3} \sqrt{x^{4} + 1}}{10} - \frac{21 x \sqrt{x^{4} + 1}}{10 \left (x^{2} + 1\right )} + \frac{21 \sqrt{\frac{x^{4} + 1}{\left (x^{2} + 1\right )^{2}}} \left (x^{2} + 1\right ) E\left (2 \operatorname{atan}{\left (x \right )}\middle | \frac{1}{2}\right )}{10 \sqrt{x^{4} + 1}} - \frac{21 \sqrt{\frac{x^{4} + 1}{\left (x^{2} + 1\right )^{2}}} \left (x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (x \right )}\middle | \frac{1}{2}\right )}{20 \sqrt{x^{4} + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**10/(x**4+1)**(3/2),x)

[Out]

-x**7/(2*sqrt(x**4 + 1)) + 7*x**3*sqrt(x**4 + 1)/10 - 21*x*sqrt(x**4 + 1)/(10*(x
**2 + 1)) + 21*sqrt((x**4 + 1)/(x**2 + 1)**2)*(x**2 + 1)*elliptic_e(2*atan(x), 1
/2)/(10*sqrt(x**4 + 1)) - 21*sqrt((x**4 + 1)/(x**2 + 1)**2)*(x**2 + 1)*elliptic_
f(2*atan(x), 1/2)/(20*sqrt(x**4 + 1))

_______________________________________________________________________________________

Mathematica [C]  time = 0.0724765, size = 75, normalized size = 0.54 \[ \frac{1}{10} \left (\frac{2 x^7}{\sqrt{x^4+1}}+\frac{7 x^3}{\sqrt{x^4+1}}-21 (-1)^{3/4} F\left (\left .i \sinh ^{-1}\left (\sqrt [4]{-1} x\right )\right |-1\right )+21 (-1)^{3/4} E\left (\left .i \sinh ^{-1}\left (\sqrt [4]{-1} x\right )\right |-1\right )\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[x^10/(1 + x^4)^(3/2),x]

[Out]

((7*x^3)/Sqrt[1 + x^4] + (2*x^7)/Sqrt[1 + x^4] + 21*(-1)^(3/4)*EllipticE[I*ArcSi
nh[(-1)^(1/4)*x], -1] - 21*(-1)^(3/4)*EllipticF[I*ArcSinh[(-1)^(1/4)*x], -1])/10

_______________________________________________________________________________________

Maple [C]  time = 0.012, size = 107, normalized size = 0.8 \[{\frac{{x}^{3}}{2}{\frac{1}{\sqrt{{x}^{4}+1}}}}+{\frac{{x}^{3}}{5}\sqrt{{x}^{4}+1}}-{\frac{{\frac{21\,i}{10}} \left ({\it EllipticF} \left ( x \left ({\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) ,i \right ) -{\it EllipticE} \left ( x \left ({\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) ,i \right ) \right ) }{{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2}}\sqrt{1-i{x}^{2}}\sqrt{1+i{x}^{2}}{\frac{1}{\sqrt{{x}^{4}+1}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^10/(x^4+1)^(3/2),x)

[Out]

1/2*x^3/(x^4+1)^(1/2)+1/5*x^3*(x^4+1)^(1/2)-21/10*I/(1/2*2^(1/2)+1/2*I*2^(1/2))*
(1-I*x^2)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*(EllipticF(x*(1/2*2^(1/2)+1/2*I*2^
(1/2)),I)-EllipticE(x*(1/2*2^(1/2)+1/2*I*2^(1/2)),I))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{10}}{{\left (x^{4} + 1\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^10/(x^4 + 1)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^10/(x^4 + 1)^(3/2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{x^{10}}{{\left (x^{4} + 1\right )}^{\frac{3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^10/(x^4 + 1)^(3/2),x, algorithm="fricas")

[Out]

integral(x^10/(x^4 + 1)^(3/2), x)

_______________________________________________________________________________________

Sympy [A]  time = 4.10445, size = 29, normalized size = 0.21 \[ \frac{x^{11} \Gamma \left (\frac{11}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{2}, \frac{11}{4} \\ \frac{15}{4} \end{matrix}\middle |{x^{4} e^{i \pi }} \right )}}{4 \Gamma \left (\frac{15}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**10/(x**4+1)**(3/2),x)

[Out]

x**11*gamma(11/4)*hyper((3/2, 11/4), (15/4,), x**4*exp_polar(I*pi))/(4*gamma(15/
4))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{10}}{{\left (x^{4} + 1\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^10/(x^4 + 1)^(3/2),x, algorithm="giac")

[Out]

integrate(x^10/(x^4 + 1)^(3/2), x)